If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100x^2+260x-162=0
a = 100; b = 260; c = -162;
Δ = b2-4ac
Δ = 2602-4·100·(-162)
Δ = 132400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132400}=\sqrt{400*331}=\sqrt{400}*\sqrt{331}=20\sqrt{331}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(260)-20\sqrt{331}}{2*100}=\frac{-260-20\sqrt{331}}{200} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(260)+20\sqrt{331}}{2*100}=\frac{-260+20\sqrt{331}}{200} $
| 1x-2=5x-6 | | 4k+2k+2=180 | | 2+6g+5=8g-7 | | 36x+10=43 | | 1/3c-1/3=7/3 | | 4x+47=2x+95 | | x+1/3=x-2/4 | | -9(x+1)=-90 | | 1/4(x-1)=x-4 | | 180=40+3x+20 | | 3b+5=10b | | -6=(x-5) | | (3x-25)+2x+34=180 | | 7v−5v−1=13 | | 4x+10=-110 | | 2n+3=4n-4 | | -10y+14=9 | | 3x+8(x-11)= | | 1/5x=128 | | 22k+18=84 | | 5a+2=4a | | 3(x-5)-4=-22 | | 20+5n=45 | | 10/7=r−(−58) | | 12u−9u=12 | | 3x^2+18x+144=381 | | 84=2*x+x+12 | | 2a+8=5a-13 | | 5t=–120 | | 2(2x-5)=x+14 | | -3(x+10)=-21 | | 10x-6=-114 |